Answer:
The solution to the System of equations is;
![\begin{gathered} x=2 \\ y=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ib5kvd4pi0sx0uuqcv51jnhfkyy97c1kir.png)
Step-by-step explanation:
Given the System of Equations;
![\begin{gathered} 3x-y=9 \\ 5x+y=7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/366a9bt88wdda54j4l4bsc2o966eobsurq.png)
Solving by elimination.
to eliminate y, let add equation 1 and 2 together;
![\begin{gathered} 3x-y+5x+y=9+7 \\ 3x+5x-y+y=16 \\ 8x=16 \\ \text{divide both sides by 8;} \\ (8x)/(8)=(16)/(8) \\ x=2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1r72i6gmkh9giihvsw3bi2194sac70kzuu.png)
Since we have the value of x let us now substitute into equation 2 to get the value of y;
![\begin{gathered} 5x+y=7 \\ 5(2)+y=7 \\ 10+y=7 \\ y=7-10 \\ y=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zf8p928ymzd2js8vl19ykcajqpxe8mzxot.png)
Therefore, the solution to the System of equations is;
![\begin{gathered} x=2 \\ y=-3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ib5kvd4pi0sx0uuqcv51jnhfkyy97c1kir.png)