28.3k views
0 votes
I need help finding x and y for that problem!! Thank you

I need help finding x and y for that problem!! Thank you-example-1
User ParkCheolu
by
8.6k points

1 Answer

2 votes

The opposite of angle 60° is x, to find the value of x, we can use the sine function.


\begin{gathered} \sin 60\degree=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 60\degree=\frac{x}{4\sqrt[]{3}} \\ \\ \text{The value for }\sin 60\degree\text{ is }\frac{\sqrt[]{3}}{2} \\ \frac{\sqrt[]{3}}{2}=\frac{x}{4\sqrt[]{3}} \\ \\ \text{Multiply both sides by }4\sqrt[]{3} \\ (4\sqrt[]{3})\frac{\sqrt[]{3}}{2}=\frac{x}{4\sqrt[]{3}}(4\sqrt[]{3}) \\ \\ \text{The }4\sqrt[]{3}\text{ will cancel out in the right side} \\ (4\sqrt[]{3})\frac{\sqrt[]{3}}{2}=\frac{x}{\cancel{4\sqrt[]{3}}}\cancel{4\sqrt[]{3}} \\ (4\cdot3)/(2)=x \\ (12)/(2)=x \\ 6=x \\ \\ x=6 \end{gathered}

Therefore, the value for x is 6 units.

To solve for y, we can use the cosine function, since y is adjacent to 60°


\begin{gathered} \cos 60\degree=\frac{\text{adjacent}}{\text{hypotenuse}} \\ \cos 60\degree=\frac{y}{4\sqrt[]{3}} \\ \\ \text{The value of }\cos 60\degree\text{ is }(1)/(2),\text{ substitute and multiply both sides by }4\sqrt[]{3} \\ \cos 60\degree=\frac{y}{4\sqrt[]{3}} \\ (4\sqrt[]{3})(1)/(2)=\frac{y}{4\sqrt[]{3}}(4\sqrt[]{3}) \\ (4\sqrt[]{3})(1)/(2)=\frac{y}{\cancel{4\sqrt[]{3}}}(\cancel{4\sqrt[]{3}}) \\ \frac{4\sqrt[]{3}}{2}=y \\ 2\sqrt[]{3}=y \\ \\ y=2\sqrt[]{3} \end{gathered}

Therefore, the value of y is 2sqrt(3) units.

User Mohammed Gadiwala
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories