To find asociation , must be calculated
R= [ Sum of xy ]/ √(sum of x^2)• (sum of y^2)
Then first calculate median for X= (10 + 20 + 4•25 + 30 + 2•35 + 40 )/ 10
median for X= 270/10= 27
Now find median for Y = ( 400 + 2•200 + 2•150 + 100 + 75 + 3•50 )/ 10
median for Y = 142.5
Then now find differences for X = X - median = X - 27
and differences for Y = Y - median
Differences X= ( -17, -7, 4•-2, 3, 2•8, 13 )
Differences Y= ( 257.5 , 2•57.5, 2•7.5 , -42.5 , - 67.5 , 3• -92.5)
NOW multiply pairs similar , and add results
( -17•257.5 ) + ( -7•2•57.5)+ ( -8•2•7.5)+ (3•-42.5) + (16•-67.5) + (13•-92.5)
All THIS added is equal to
= -7712 .5
NOW find denominator of R
√(sum of x^2)• (sum of y^2)=
Then
Sum of x^2 = -17^2 + -7^2+ -8^2 + 3^2 +16^2 + 13^2 = 836
Sum of y^2 = 66306.25 +13225 + 225 + 1806.25 + 4556.25 + 77006.25= Sum of y^2 = 163125
Now calculate
√(sum of x^2)• (sum of y^2)=√ (836)•(163125)= 11677.9
So then finally divide both results
numerator/ denominator= -7712 .5/ 11677.9= -0.66
THEN ANSWER IS -0.66
Is a negative association