Given
The product of three consecutive odd numbers is 2145.
To find the numbers.
Step-by-step explanation:
Let be an odd number.
That implies, the three consecutive odd numbers are,
![(x-2),x,(x+2)](https://img.qammunity.org/2023/formulas/mathematics/college/crlbfc4eny3iam57szo2c2yuhfb695rtgb.png)
Since their product is 2145.
Then,
![(x-2)\cdot x\cdot(x+2)=2145](https://img.qammunity.org/2023/formulas/mathematics/college/ydq8gjx1z2fq5z3khmf2ebhitx0b25tl03.png)
Since the prime factorization of 2145 is,
That implies,
![\begin{gathered} (x-2)\cdot x\cdot(x+2)=5*3*13*11 \\ =15*13*11 \\ =11\cdot13\cdot15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/o7ilh9f6n5if0y42amuk5fsmxh1v5ls6bb.png)
Hence, the three consecutive odd numbers is 11, 13, 15.
And,
![\begin{gathered} (x-2)\cdot x\cdot(x+2)=2145 \\ x(x^2-4)=2145 \\ x^3-4x-2145=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7ca8o7rm4hhnmibur7l31q67qkhwttz57o.png)
Therefore, the polynomial is,
![f(x)=x^3-4x-2145](https://img.qammunity.org/2023/formulas/mathematics/college/9medczttfrzo93dw5ckpoqjikoip8copf8.png)