The given expression is
![\sin (2x)=\cos (2x-10)](https://img.qammunity.org/2023/formulas/mathematics/college/bj5epn3k20z1jlvx22959ijk45tywfypzf.png)
To find the correct value, we just have to evaluate each option.
![\begin{gathered} \sin (2\cdot20)=\cos (2\cdot20-10) \\ \sin 40=\cos 30 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1gelz4gwfjbre6b4edpwsxxhqqsl5cvhxj.png)
This is not true, so x = 20 is not the solution.
x = 21.
![\begin{gathered} \sin (2\cdot21)=\cos (2\cdot21-10) \\ \sin 42=\cos 32 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9u0e9m58rj5ftp8bmlufvbe8zaki9wwnbm.png)
x = 24
![\begin{gathered} \sin (2\cdot24)=\cos (2\cdot24-10) \\ \sin 48=\cos 38 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8cjf6m1xzoym14m6ly4vtv2kjv0d2lbeub.png)
x = 25.
![\begin{gathered} \sin (2\cdot25)=\cos (2\cdot25-10) \\ \sin 50=\cos 40 \\ 0.766\ldots=0.766\ldots \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/29zqil4vcx6m7boud8hiu7h5awexxrv63w.png)
As you can observe, the last option satisfies the equation.
Therefore, option 4 is the answer.