ANSWER
![\begin{equation*} 111.6\text{ }m\/s^2 \end{equation*}](https://img.qammunity.org/2023/formulas/physics/college/ji2zzxcrlh4eijkxnmd2qry3ndzgdf8zv3.png)
Step-by-step explanation
To find the magnitude of the acceleration, find the components of the acceleration on the x and y-axis.
In the x-direction, we can find the acceleration using the formula:
![x=x_0+v_0t+(1)/(2)a_xt^2](https://img.qammunity.org/2023/formulas/physics/college/vf53k0ok3tazbp6dragce9ytxpaqvwzulc.png)
where t = time taken
x = distance traveled in the x-direction
a = acceleration in the x-direction
v0 = initial velocity in the x-direction
x0 = 0 m
Hence, the acceleration in the x-direction is:
![\begin{gathered} 19500\cos32=0+(1810\cos20)(9.20)+(1)/(2)*a_x*(9.20)^2 \\ 16536.94=15647.76+42.32a_x \\ 42.32a_x=16536.94-15647.76=889.18 \\ a_x=(889.18)/(42.32) \\ a_x=21.01\text{ }m\/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hrtgiq96kgvvtmgf2b8nlthr5dbykxub9y.png)
In the y-direction, we can find the acceleration using the formula:
![y=y_0+v_0t+(1)/(2)a_yt^2](https://img.qammunity.org/2023/formulas/physics/college/yg3t3dw080wahb5ue6wr4qkpdbvle1zhn0.png)
where y = distance traveled in the y-direction
y0 = 0 m
Hence, the acceleration in the y-direction is:
![\begin{gathered} 19500\sin32=0+(1810\sin20)(9.20)+(1)/(2)a_y*9.20^2 \\ 10333.43=5695.32+42.32a_y \\ 42.32a_y=10333.43-5695.32=4638.11 \\ a_y=(4638.11)/(42.32) \\ a_y=109.6\text{ }m\/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/hag6n8kw9htwszobarp97g7ivb35p68l3f.png)
The magnitude of the acceleration is given by:
![a=√(a_x^2+a_y^2)](https://img.qammunity.org/2023/formulas/physics/college/wl2hf9akj6grlmenshgu5d3smgspt364fh.png)
Therefore, the magnitude of the acceleration is:
![\begin{gathered} a=√(21.01^2+109.6^2) \\ a=√(441.4201+12012.16)=√(12453.5801) \\ a=111.6\text{ }m\/s^2 \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/asm292n7x7ebwxcapiu2pwuwzud6cyf7f0.png)
That is the answer.