129k views
1 vote
A. find an equation for f(t) B. explain how you can use the graph's t-intercept to check the reasonableness of your equation.

A. find an equation for f(t) B. explain how you can use the graph's t-intercept to-example-1

1 Answer

6 votes

the form of a parabola has the form


f(t)=at^2+bt+c

when t=0


f(0)=c

usinc the graphic when t = 0 the value on the y axis is 45


c=45

now using the formula for the vertex:


\begin{gathered} \text{vertex}=(h,k) \\ h=(-(b)/(2a));k=f(-(b)/(2a)) \\ \end{gathered}

since h=0


0=-(b)/(2a)\rightarrow b=0

the only possible way for this to be 0 is if the numerator is equal to 0, reason why b is 0

now using the point given, we find a


\begin{gathered} y=at^2+c \\ 29=a+45 \\ 29-45=a \\ a=-16 \end{gathered}

re write the equation


f(t)=-16x^2+45

there is not h, inside the parentheses beacuse h=0

Does the equation makes sense?

Yes, because the number accompanying the x^2 the parabola is upside-down, also the vertex its on (0,45) menaing the parabola moved 45 units up.

Also since the hammer is dropping the y should become less ultil it gets to the floor.

User Nurdin
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.