Answer:
The height of the tower is 75
Step-by-step explanation:
Given:
height of the pole = 2.7m
shadow of the pole = 1.53m
shadow of the tower = 42.25m
To find:
The height of the tower
To determine the height, we will apply the similarity theorem:
The ratio of corresponding sides will be equal
![\frac{shadow\text{ of pole}}{shadow\text{ of tower}}\text{ = }\frac{height\text{ of pole}}{height\text{ of tower}}](https://img.qammunity.org/2023/formulas/mathematics/college/urzs04nsio01h2i2nz7dh27zdnambhrwhm.png)
![\begin{gathered} (1.53)/(42.25)=\frac{2.7}{height\text{ of the tower}} \\ \\ height\text{ of the tower = }\frac{42.25\text{ }*\text{ 2.7}}{1.53} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/n73o1vpysnr4ej93d8zczkbclqp4jzp9uu.png)
![\begin{gathered} height\text{ of the tower = 74.56 m} \\ \\ To\text{ the nearest meter, height of the tower is 75m} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9he0gd3l4qxdjar5w0den7c3puf950crtc.png)