Question 3.
Given the equation:
![C(t)=9(0.5)^(0.021t)](https://img.qammunity.org/2023/formulas/mathematics/college/ai84rs3rr1b9wjabyl5uk6as76i6o5j2hw.png)
Where C is in milligrams per litre t minutes after taking the medicine.
Let's solve for the follosing:
• (a). Write down C(0).
To find C(0), substitute 0 for t and solve for c(0):
![\begin{gathered} c(0)=9(0.5)^(0.021*0) \\ \\ c(0)=9(0.5)^0 \\ \\ c(0)=9(1) \\ \\ c(0)=9 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/asoes85cmspijx53a0so2u0srji5lw0c6t.png)
• (b). Find the concentration of the medication left in the patient's bloodstream after 40 minutes.
Substitute 40 for t and solve for C(40).
We have:
![\begin{gathered} c(40)=9(0.5)^(0.021(40)) \\ \\ c(40)=9(0.5)^(0.84) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pey2iuso6oejoqznh0nz723vn2njjotzj3.png)
Solving further:
![C(40)=5.02\text{ mg}](https://img.qammunity.org/2023/formulas/mathematics/college/370t5ny9q3u83nyurwgp0oceiderfenjhm.png)
Therefore, the concentration after 40 minutes is 5.03 milligrams per litre
• (c)., To solve this, first substitute 0.350 for C(t) and find t:
![\begin{gathered} 0.350=9(0.5)^(0.021t) \\ \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g2fddot145gdi6vh83qaa5bh5f0lkmalxt.png)
Divide both sides by 9:
![\begin{gathered} (0.350)/(9)=(9(0.5)^(0.021t))/(9) \\ \\ (0.350)/(9)=0.5^(0.021t) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/6g3p6j338abobpezfyn0km8llgqykf5zea.png)
Take the natural loagraithm of both sides:
![\begin{gathered} ln((350)/(9))=0.021tln(0.5) \\ \\ −3.247046=0.021t(−0.693147) \\ \\ −3.247046=-0.014556t \\ \\ t=(−3.247046)/(-0.014556) \\ \\ t=223.07 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5doempd9kp0rksyt1035e6tbjy2j0wn98w.png)
Therefore, the patient will take the medicine again 223 minutes after 14:00.
Convert the time to hours:
Where 60 mins = 1 hour
![(223)/(60)=3\text{ hrs 43 mins}](https://img.qammunity.org/2023/formulas/mathematics/college/j3tp7gf9nw1aeyfrv1k2evcqfk8e5j0ucm.png)
14:00 + 3:43 = 17:43
Therefore, the patient will take the medicine at 17:43
ANSWER:
(A). 9
(B). 5.02 mg per litre
(c). 17:43