ANSWER:
The method would be the difference of squares
![k^4-16=(k^2+4)\cdot(k+2)\cdot(k-2)](https://img.qammunity.org/2023/formulas/mathematics/college/73fje6ui4b14xcqqxrkjrchoy0ic719k0c.png)
Explanation:
We have the following expression:
![k^4-16](https://img.qammunity.org/2023/formulas/mathematics/college/wvkg5hi6mu04vle311ypjuej23o4bqfab3.png)
The first thing is to apply the law of exponents, like this:
![\begin{gathered} x^(a\cdot b)=(x^{a^{}})^b \\ \text{therefore:} \\ (k^2)^2-16 \\ \text{ we also know that:} \\ 16=4^2 \\ \text{replacing} \\ (k^2)^2-4^2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7nblrp0w9vi5os7f1eq7oyohh3my7urj4r.png)
Now, we apply the rule of binomial square subtraction (Difference of squares), like this:
![\begin{gathered} a^2-b^2=(a+b)\cdot(a-b) \\ \text{therefore, in this case:} \\ (k^2)^2-4^2=(k^2+4)\cdot(k^2-4) \\ \text{ we apply the same rule again} \\ (k^2-4)=(k^2-4)=(k+2)\cdot(k-2) \\ \text{ Finally, it would be:} \\ k^4-16=(k^2+4)\cdot(k+2)\cdot(k-2) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qcrnen52ux5jvgjiwselavg8i5aw5n9h9v.png)