We need to find the length of the line segments AB and CD
the formula to find the distance between two points ( x1 , y1 ) and ( x2 , y2 ) is :
![d=\sqrt[]{(x2-x1)^2+(y2-y1)^2}](https://img.qammunity.org/2023/formulas/mathematics/college/1h551ypq5weta3sw0dynfch7nxiwrgmnba.png)
The distance of the line segment AB:
A(-5,11) , B(3,5)
so,
![d_(AB)=\sqrt[]{(3--5)^2+(5-11)^2}=\sqrt[]{8^2+(-6)^2}=\sqrt[]{64+36}=\sqrt[]{100}=10](https://img.qammunity.org/2023/formulas/mathematics/college/fv0wx4g8np2ggwxwvc3a4idb6pq9y2tru3.png)
The distance of the line segment CD:
C(9,3), D(2,10)
![d_(CD)=\sqrt[]{(2-9)^2+(10-3)^2}=\sqrt[]{(-7)^2+7^2}=\sqrt[]{49+49}=\sqrt[]{98}](https://img.qammunity.org/2023/formulas/mathematics/college/vh0nk3knqjt9iqry94c41mdeu3ovw91u9i.png)
Compare the lengths:
![\begin{gathered} \sqrt[]{98}<\sqrt[]{100} \\ \sqrt[]{98}<10 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ndti79tx3gw07e7742s4upz1s0yy72a3ai.png)
So, the line segment AB is greater then the line segment CD
So, the longer line segment is AB