126k views
4 votes
Find all real solutions by factoring the equation: -2x^2 + 2 = 3x^3 - 3x

User Pierre L
by
8.1k points

1 Answer

2 votes

Step 1:

Write the equation


-2x^2\text{ + 2 = }3x^3\text{ - 3x}

Step 2:


3x^3+2x^2\text{ - 3x - 2 = 0}

Next, find the first zero by trial and error. choose value of x that when you substitute will result in zero.

x = -1 will result into zero

Let check


\begin{gathered} 3x^3+2x^2\text{ - 3x - 2 = 0} \\ 3*(-1)^3+2*(-1)^2\text{ -3}*\text{ (-1) - 2} \\ -3\text{ + 2 + 3 -2 = 0} \\ \text{Hence -1 is zero and x = -1 or x + 1 is a factor.} \end{gathered}

Step 4


\text{Divide }3x^3+2x^2\text{ - 3x - 2 by x + 1 to find the other factors.}
\begin{gathered} \text{ 3x}^2\text{ - x -2} \\ \text{ x+ 1 }\sqrt[]{3x^3+2x^2\text{ - 3x - 2 }} \\ \text{ -(3x}^3+3x^2)\text{ } \\ \text{ -x}^2\text{ - 3x - 2} \\ \text{ -(-x}^2\text{ - x)} \\ \text{ -2x - 2} \\ \text{ -2x - 2} \\ \text{ 0} \end{gathered}

Step 5:

Hence


\begin{gathered} 3x^3+2x^2\text{ - 3x - 2 = 0} \\ (x+1)(3x^2-\text{ x - 2) = 0} \\ (x+1)(3x^2-\text{ 3x+ 2x - 2) = 0} \\ (x+1)\lbrack3x(x^{}-\text{ 1)+2(x - 1)\rbrack = 0} \\ (x+1)(x-1)(3x+2) \end{gathered}

Final answer

Equate each factor to zero to find the values of x.


\begin{gathered} \text{x + 1 = 0, x = -1} \\ \text{x - 1 = 0 , x = 1} \\ 3x\text{ + 2 = 0 , x = }(-2)/(3) \end{gathered}

x = -1 , x = 1, x = -2/3

User Kekkeme
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories