Answer:
x = -0.21, 0.54
Step-by-step explanation:
The quadratic formula says that if we have a quadratic equation of the form

then the value of x is given by
![x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a}](https://img.qammunity.org/2023/formulas/mathematics/college/rxvf73usjbbwyik14knxdemoz21vfz2ufc.png)
Now in our case, we have

therefore, for the quadratic formula we put a = 9, b = -3, and c = -1 to get
![x=\frac{3\pm\sqrt[]{3^2-4(9)(-1)}}{2(9)}](https://img.qammunity.org/2023/formulas/mathematics/college/2x65rtj8kubgvq01cbcylj8wq7wn4mgfs5.png)
which simplifies to give
![x=\frac{3\pm3\sqrt[]{5}}{18}](https://img.qammunity.org/2023/formulas/mathematics/college/daf2q0gyxj5bnqb9i9nv5pyx5g7buqqx1c.png)
![\begin{gathered} x=(1)/(6)-\frac{\sqrt[]{5}}{6}\approx-0.21 \\ x=(1)/(6)+\frac{\sqrt[]{5}}{6}\approx0.54 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/1jnmf0unnk95569c6go6rvyrfl65dkjtub.png)
Hence, rounded to the nearest hundreth, the solutions to the quadratic equation are
x = -0.21 and x = 0.54.