the
Under the assumption that each line on the graph represents 1 unit on both axes.
Step-1: Determine the coordinates of 2 points on the graph
A(-2,1) and B(5,-6)
Step2: Find the slope of the line.
By formula,
![\begin{gathered} \text{Slope = }(y_2-y_1)/(x_2-x_1) \\ \text{Where (-2,1)}\Rightarrow x_1=-2;y_1=1 \\ (5,6)\Rightarrow x_2=5;y_2=-6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/bcex0t3e3m9xnstrcmpaouzpd4wcdncu6c.png)
![\text{Slope =}(-6-1)/(5--2)=-(7)/(7)=-1](https://img.qammunity.org/2023/formulas/mathematics/college/eqlazjycqfzxuu4ca33uo5svsl7ogrutbd.png)
Step 3: Find the equation of the line using the formula below:
![\begin{gathered} y-y_1=slope(x-x_1) \\ \text{Where x}_1=-2;y_1=1 \\ \text{Substituting these values into the formula, we get} \\ y-1=-1(x--2) \\ \text{Simplifying, we get,} \\ y-1=-1(x+2) \\ \text{Clearing the bracket, we get} \\ y-1=-x-2 \\ \text{Collecting like terms, we get} \\ y=-x-2+1 \\ y=-x-1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/m6kho1x7yubl02u73jaw3f6inqzlb37qgl.png)
Hence, the correct answer for equation of the line is y = -x -1