3.2k views
2 votes
Let g(x)=x^2-64 and h(x)= (long division symbol)8x+512. Find each combination and state its domain.1. (h/g)(x)(Number one has a fraction)2. (h • g)(x)3. (g • h)(x)Show work please!

1 Answer

2 votes

The given functions are:


\begin{gathered} g(x)=x^2-64 \\ h(x)=8x+512 \end{gathered}

1. (h/g)(x):


((h)/(g))(x)=(h(x))/(g(x))

Then we need to divide h(x) by g(x):


(8x+512)/(x^2-64)

The factored form of the denominator is:


\begin{gathered} x^2-64=(x+8)(x-8) \\ \text{Then} \\ (8x+512)/((x+8)(x-8)) \end{gathered}

We have to use partial fractions by applying the following model:


(8x+512)/((x+8)(x-8))=(a_0)/((x+8))+(a_1)/((x-8))

Multiply both sides of the equations by the denominator:


((8x+512)(x+8)(x-8))/((x+8)(x-8))=(a_0(x+8)(x-8))/((x+8))+(a_1(x+8)(x-8))/((x-8))

Now, simplify:


(8x+512)=a_0(x-8)+a_1(x+8)

To find a0 and a1, substitute the roots of the factors x=-8 and x=8, and solve:


\begin{gathered} x=8 \\ (8\cdot8+512)=a_0(8-8)+a_1(8+8) \\ 64+512=a_0(0)+a_1(16) \\ 576=a_1(16) \\ a_1=(576)/(16)=36 \\ \text{For x=-8:} \\ (8\cdot-8+512)=a_0(-8-8)+a_1(-8+8) \\ -64+512=a_0(-16)+a_1(0) \\ 448=a_0(-16) \\ a_0=(448)/(-16) \\ a_0=-28 \end{gathered}

Now, replace these values and find the equation:


\begin{gathered} (a_0)/((x+8))+(a_1)/((x-8))=\frac{-28_{}}{x+8}+\frac{36_{}}{x-8} \\ ((h)/(g))(x)=\frac{-28_{}}{x+8}+\frac{36_{}}{x-8} \end{gathered}

2. (h*g)(x):


\begin{gathered} (h\cdot g)(x)=h(x)\cdot g(x) \\ (h\cdot g)(x)=(8x+512)(x^2-64) \end{gathered}

Apply the distributive property:


\begin{gathered} (h\cdot g)(x)=8x\cdot x^2+8x\cdot(-64)+512\cdot x^2+512\cdot(-64) \\ (h\cdot g)(x)=8x^3-512x+512x^2-32768 \\ And\text{ reorder terms:} \\ (h\cdot g)(x)=8x^3+512x^2-512x-32768 \end{gathered}

3. (g*h)(x):


\begin{gathered} (g\cdot h)(x)=g(x)\cdot h(x) \\ (g\cdot h)(x)=(x^2-64)\cdot\mleft(8x+512\mright) \end{gathered}

The result will be the same, but let's solve it to check. Apply the distributive property:


\begin{gathered} (g\cdot h)(x)=x^2\cdot8x+x^2\cdot512-64\cdot8x-64\cdot512 \\ (g\cdot h)(x)=8x^3+512x^2-512x-32768 \end{gathered}

User Igor Maznitsa
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories