![B(t)=3000(1.05)^t](https://img.qammunity.org/2023/formulas/mathematics/college/9x211dlkwcdhkq6gec3sh2g6otjyezhne1.png)
1) Given that the base of the exponent is 1.05, which is greater than 1, then the function is increasing
2) Substituting with t = 0 into the equation, we get:
![\begin{gathered} B(0)=3000(1.05)^0 \\ B(0)=3000\cdot1 \\ B(0)=3000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hd02ioa6rlgheh99mnj6d80kd2ulzu8p09.png)
The initial investment is $3,000
3) The growth factor is the base of the exponential function, that is, 1.05
4) There are two ways to express an exponential function:
![\begin{gathered} f(t)=a\cdot b^t \\ Or \\ f\mleft(t\mright)=a\mleft(1+r\mright)^t \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s3dtf6oldmvx2dl4uc248oifvntl4blu2e.png)
where:
![b=1+r](https://img.qammunity.org/2023/formulas/mathematics/college/h8h29sfzvr801zfkbcaeshnhlv51gkrp9n.png)
As stated before, the base is b = 1.05. In terms of variable r (the interest rate):
![\begin{gathered} 1.05=1+r \\ 1.05-1=1-1+r \\ 0.05=r \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/73aervycojr1eenor0y45chbjcvijwcznw.png)
Expressing the interest rate as a percent:
![r=0.05\cdot100=5\text{ \%}](https://img.qammunity.org/2023/formulas/mathematics/college/ijlj2mkn56ks4tfqv3naoqvdm48wvlkub7.png)