(a) The random variable in this experiment is the number of aces in the experiment, that is all possible values of x {0,1,2,3}
(b) Given that the number of standard deck of cards is 52 and there are 4 aces, the probability of picking an ace is
![Pr(\text{ace)}=(4)/(52)=(1)/(13)](https://img.qammunity.org/2023/formulas/mathematics/college/tdtxic1edcznqijhey2x2ai0gpgtvpegzn.png)
The probability of success and failure in this case is shown below
![\begin{gathered} p\Rightarrow\text{probability of success} \\ q\Rightarrow\text{probability of failure} \\ p\Rightarrow Pr(\text{ace)}=(1)/(13) \\ q\Rightarrow1-p=1-(1)/(13)=(12)/(13) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k8gjn1h9j3ns79m86tvkohoqy70701mz13.png)
To construct a probability distribution table for the number of aces for x values equal to 0,1,2,3. We are going to use binomial distribution formula, the binomial distribution formula is shown below
![Pr(r=x)=^nC_r* p^r* q^(n-r),\Rightarrow\begin{cases}n=\text{the }number\text{ of trials} \\ r=the\text{ number of }specific\text{ outcomes in the trial} \\ x=0,1,2,3\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/kms8n788idp6jg7nufii7osurqoj4y3w5w.png)
For x=0
![\begin{gathered} r=x=0,p=(1)/(13),q=(12)/(13),n=3 \\ Pr(r=0)=^3C_0*((1)/(13))^0*((12)/(13))^3 \\ =1*1*0.7865=0.7865 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8r51tcx5ul4dtwrqikicexakslgvssy8mw.png)
For x=1
![\begin{gathered} r=x=1,p=(1)/(13),q=(12)/(13),n=3 \\ Pr(r=1)=^3C_1*((1)/(13))^1*((12)/(13))^2 \\ =3*(1)/(13)*(144)/(169) \\ =(432)/(2197)=0.1966 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cyywj1lt1gxsvtzclwurow5olvbjdzja3m.png)
For x=2
![\begin{gathered} r=x=2,p=(1)/(13),q=(12)/(13),n=3 \\ Pr(r=2)=^3C_2*((1)/(13))^2*((12)/(13))^1 \\ =3*(1)/(169)*(12)/(13) \\ =(36)/(2197)=0.0164 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ojy1i2t2j72p91hsvtt1l95y2m6af2avv4.png)
For x=3
![\begin{gathered} r=x=3,p=(1)/(13),q=(12)/(13),n=3 \\ Pr(r=2)=^3C_3*((1)/(13))^3*((12)/(13))^0 \\ =1*(1)/(2197)*1 \\ =(1)/(2197)=0.0005 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s9efp0qnlyd7mtutlahofyd9pnmr0wynsu.png)
Answer: The probability distribution table is shown below