117k views
5 votes
Question 31.Find the indicated function and state it’s domain in interval notation?

Question 31.Find the indicated function and state it’s domain in interval notation-example-1
User Daegalus
by
7.0k points

1 Answer

5 votes

\begin{gathered} (f\text{ + g)(x) = x + 4 + }\sqrt[]{2x\text{ -6}} \\ \text{domain: \lbrack{}3, }\infty) \end{gathered}Step-by-step explanation:
\begin{gathered} 31_{})\text{ f(x) = }\sqrt[]{2x\text{ - 6}} \\ g(x)\text{ = x + 4} \\ \\ (f+g)(x)\text{ =f(x) + g(x)} \end{gathered}
\begin{gathered} f(x)+\text{ g(x) = }\sqrt[]{2x\text{ -6}}\text{ + (x + 4)} \\ f(x)+\text{ g(x) = x + 4 + }\sqrt[]{2x\text{ -6}} \\ (f\text{ + g)(x) = x + 4 + }\sqrt[]{2x\text{ -6}} \end{gathered}
\begin{gathered} To\det er\min e\text{ the domain, we n}ed\text{ to find the values of x that makes the function solvable:} \\ we\text{ consider: }\sqrt[]{2x\text{ - 6}} \\ \text{when x = 3} \\ \sqrt[]{2(3)\text{ - 6}}\text{ = }\sqrt[]{0}\text{ = 0} \\ \text{when x = 4} \\ \sqrt[]{2(4)\text{ - 6}}\text{ = }\sqrt[]{2}\text{ } \\ \text{when x = 2} \\ \sqrt[]{2(2)\text{ - 6}}\text{ = }\sqrt[]{-2}\text{ } \\ we\text{ can't find the square root of a negative number except we introduce complex number } \end{gathered}
\begin{gathered} So\text{ from x = 2 towards the negative side, we won't be able to find the squareroot of the value} \\ \text{Hence, x have to be equal or greater than 3} \\ \\ \text{Domain: x }\ge\text{ 3} \\ In\text{ interval notation, } \\ \text{domain: \lbrack{}3, }\infty) \end{gathered}

User Mpriya
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories