Answer:
From the values above we have the mean to be
![\mu_x=1.4](https://img.qammunity.org/2023/formulas/mathematics/college/vq31fbm2wsodiph8dg7ze3irvfv11p5rtb.png)
Step 1:
We will figure out the values of
![x-\mu_x](https://img.qammunity.org/2023/formulas/mathematics/college/1ka1okyly0vhh318kybam6uj39ebs7m94e.png)
![\begin{gathered} x-\mu_x=0-1.4=-1.4 \\ x-\mu_x=1-1.4=-0.4 \\ x-\mu_x=2-1.4=0.6 \\ x-\mu_x=3-1.4=1.6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/zznkid534hb8r9083m0atp3xh3hzw60myk.png)
Step 2:
We will figure out the values of
![(x-\mu_x)^2](https://img.qammunity.org/2023/formulas/mathematics/college/454wzvl637be5rigc32ocut0d7xivltprd.png)
![\begin{gathered} (x-\mu_x)^2=(-1.4)^2=1.96 \\ (x-\mu_x)^2=(-0.4)^2=0.16 \\ (x-\mu_x)^2=(0.6)^2=0.36 \\ (x-\mu_x)^2=(1.6)^2=2.56 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/7c8jk1f3xdluruzduibhv00fhrsyo3mhi0.png)
Step 3:
We will figure out the value of
![(x-\mu_x)^2.P(x)](https://img.qammunity.org/2023/formulas/mathematics/college/fq5twggrhz0ih5pre4tmqrz7clxusmplbu.png)
![\begin{gathered} (x-\mu_x)^2.P(x)=0.1*1.96=0.196 \\ (x-\mu_x)^2.P(x)=0.6*0.16=0.096 \\ (x-\mu_x)^2.P(x)=0.36*0.1=0.036 \\ (x-\mu_x)^2.P(x)=2.56*0.2=0.512 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5emga12ytpb95avqqz2vbxap91nzmod1cr.png)
Step 4:
We will calculate the variance of the distribution using the formula below
![\begin{gathered} \sum_{n\mathop{=}0}^(\infty)(x-\mu_x)^2.P(x)=0.196+0.096+0.036+0.512 \\ variance=0.84 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/epgj2tjg0nnd29j75u43son2sq3959b3tb.png)
Hence,
The variance is = 0.84
Step 5:
To calculate the standard deviation, we will use the formula below
![\begin{gathered} \sigma=√(variance) \\ \sigma=√(0.84) \\ \sigma=0.917 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/iknwvd7bxp65w6mbekk0j6x42d26dj6zna.png)
Hence,
The standard deviation is = 0.917