Given
![\begin{gathered} f(x)\text{ =5x -2 , x <}1 \\ f(x)=\text{ -x + 8 , x }\ge\text{ 1} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jh8dkz6v19cpngj54ij9wt9qe7epn8kdrg.png)
Required: f(-2) + f(3)
The given function f(x) is a piece-wise function . This implies that the function is defined differently at different range of x
For the given problem
At x = -2
![f(x)\text{ = 5x - 2}](https://img.qammunity.org/2023/formulas/mathematics/college/g42nj5ia6ditoqv2cfh7ridhiixewu09bi.png)
Substituting the value of x into f(x):
![\begin{gathered} f(-2)=\text{ 5\lparen-2\rparen}-\text{ 2} \\ =\text{ -10 - 2} \\ =\text{ -12} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/928w2cw94q1r58nd2exrevm8q3w02oa0tr.png)
At x = 3
![f(x)=\text{ -x + 8}](https://img.qammunity.org/2023/formulas/mathematics/college/fg73aqysyxuv8n2h15trcz02pfm5uhgp68.png)
Substituting the value of x into f(x):
![\begin{gathered} f(3)\text{= -3 + 8} \\ =\text{ 5} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h8f9ef1nkjmb6r1dzrryfuow2nana4vull.png)
Next, we sum f(-2) and f(3):
![\begin{gathered} f(-2)\text{ + f\lparen3\rparen = -12 + 5} \\ =\text{ -7} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r4jxt3c8gxbuki7eb7zwavsrvsniu7240l.png)
Answer: -7 (Option B)