Answer:
Given quadratic function,
![f\mleft(x\mright)=3x^2-12x+7](https://img.qammunity.org/2023/formulas/mathematics/college/ap71bw9lvxfxtrda14psmc0voj6hw9076k.png)
a) To find direction does the parabola open.
First we simplify the given equation in the standard equation of parabola,
![f\mleft(x\mright)=3\lparen x^2-4x)+7](https://img.qammunity.org/2023/formulas/mathematics/college/zjdo8naduvfalnyxha7qbb1zp02hf9darn.png)
![f\mleft(x\mright)=3\operatorname{\lparen}x^2-4x+4-4)+7]()
![f\mleft(x\mright)=3\operatorname{\lparen}x^2-4x+2^2)-12+7]()
![f\mleft(x\mright)=3\left(x-2\right)^2-5](https://img.qammunity.org/2023/formulas/mathematics/college/apxgq1ye37grzbfny5pyn9mjd3y3we1p8x.png)
we know that, y=f(x), using this we get,
![y+5=3(x-2)^2](https://img.qammunity.org/2023/formulas/mathematics/college/b89olxnsb4c1l4t5xvz48k3nureaxeck41.png)
![\left(x-2\right)^2=(1)/(3)\left(y+5\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ti1r6r2ko5c9cyice4jhy5gwi1flhrqs39.png)
From the standard form of the equation we have that,
![(x-h)^2=4a(y-k)](https://img.qammunity.org/2023/formulas/mathematics/college/3doii6p187ecmewmd9w8r5wa0uiq1s2adx.png)
(h,k) is the vertex, and the parabola is open upward.
Hence the parabola is open upward.
b) To find the equation for the axis of symmetry.
The equation of the parabola is,
![\left(x-2\right)^2=(1)/(3)\left(y+5\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ti1r6r2ko5c9cyice4jhy5gwi1flhrqs39.png)
Vertex is (2,-5),
To axis of symmetry passes through the vertex and parallel to y axis since it is open upward.
we get,
Axis of symmetry is,
![x=2](https://img.qammunity.org/2023/formulas/mathematics/college/6ij5lvx45qkbn22ki7umkb6rdcr9rugcgd.png)
c) To find the coordinates of the vertex,
The equation of the parabola is,
![\left(x-2\right)^2=(1)/(3)\left(y+5\right)](https://img.qammunity.org/2023/formulas/mathematics/college/ti1r6r2ko5c9cyice4jhy5gwi1flhrqs39.png)
Vertex is (2,-5).