10. Using the converse of the alternate interior angle theorem, we can prove that line J is parallel to line K.
Given:
![\angle\text{ 16 }\cong\text{ }\angle\text{ 10}](https://img.qammunity.org/2023/formulas/mathematics/college/vtze7h596mutlsl8mqzmhmfme9kehpjqy5.png)
Prove: J || K
Statement:
![\angle\text{ 16 }\cong\text{ }\angle\text{ 10 }](https://img.qammunity.org/2023/formulas/mathematics/college/iq34y8eonrtflpxcv1v6fp1qftclbm006p.png)
Reason: Given
Statement:
![\angle\text{ 10 }\cong\text{ }\angle\text{ 12 }](https://img.qammunity.org/2023/formulas/mathematics/college/tpa0ihzczpgkvk8q9kju205mb9tyauje8o.png)
Reason: Vertical angles theorem
Statement:
![\angle\text{ 12 }\cong\text{ }\angle\text{ 16}](https://img.qammunity.org/2023/formulas/mathematics/college/p83xb5uv591t015cver4l7nr7g2i2o29di.png)
Reason: Transitive property of congruence
Statement:
J || K
Reason:
![\text{Converse of the corresponding angles postulate}](https://img.qammunity.org/2023/formulas/mathematics/college/j9hsoii79g3v6r2cdz189jlxutv0a7v5b7.png)