Given:
The charge at the origin is,
![\begin{gathered} Q_1=97.32\text{ }\mu C \\ =97.32*10^(-6)\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/cbhx2w9nd20zwzeirsus6p18b8r9n14b9u.png)
The second charge is,
![\begin{gathered} Q_2=14.5\text{ }\mu C \\ =14.5*10^(-6)\text{ C} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/epxyl1nlwug6aityj3y3hf0l7e7okgoke0.png)
The second charge is at a distance of
![\begin{gathered} r=11.88\text{ cm} \\ =0.1188\text{ m} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/yo9rl8hdodnuwg8oq3g60ocbpwgr600nkj.png)
from the origin
To find:
The work to place the second charge
Step-by-step explanation:
The work to place the second charge is,
![\begin{gathered} W=(kQ_1Q_2)/(r) \\ Here,\text{ k=9}*10^9\text{ N.m}^2.C^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/6gvozkd5dgaybd5y1dkynczpge85nsz587.png)
substituting the values we get,
![\begin{gathered} W=(9*10^9*97.32*10^(-6)*14.5*10^(-6))/(0.1188) \\ =106.9\text{ J} \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ropmofk7dkang61rxux43okhio9a94ri4t.png)
Hence, the required work is 106.9 J.