we have that
If the cosecant of angle alpha is negative
then
the angle alpha lies on the III or IV quadrant
The problem says that the angle does not lie on the III quadrant
therefore
The angle alpha lies on the IV quadrant
step 1
Find out the value of sine
![\begin{gathered} csc\alpha=(1)/(sin\alpha) \\ \\ sin\alpha=-(8)/(11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/dup1hevsstb0yfjiwmxgj6rliihf5dqm76.png)
step 2
Find out the value of cosine
![sin^2\alpha+cos^2\alpha=1](https://img.qammunity.org/2023/formulas/mathematics/college/5uvvufurc2ugqvzx5b7z8zf8eiy0eijods.png)
substitute the value of the sine
![\begin{gathered} (-(8)/(11))^2+cos^2\alpha=1 \\ \\ cos^2\alpha=1-(64)/(121) \\ \\ cos^2\alpha=(57)/(121) \\ \\ cos\alpha=(√(57))/(11) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cmxj67yxpc6rxg8quybpfzyt6b1jjsgt5f.png)
step 3
Find out the value of the tangent
![\begin{gathered} tan\alpha=(sin\alpha)/(cos\alpha) \\ \\ tan\alpha=((8)/(11))/((√(57))/(11))=-(8)/(√(57)) \\ \\ tan\alpha=-(8)/(√(57)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/i3pzypk6e3izll9qrxxw3t287n69m81a3z.png)