The equation for a simple harmonic motion (SHM) is given by:
![y=A\cdot\sin (wt+\alpha)](https://img.qammunity.org/2023/formulas/physics/college/bhabbokzht1gcwmq14kiosbr1dzx69fzxr.png)
Where A is the amplitude, alpha is the initial phase and the period is given by T = 2π/omega.
So, for A = 2, T = 1.5 and alpha1 = π/2. we have:
![\begin{gathered} \omega=(2\pi)/(T)=(2\pi)/(1.5)=(4\pi)/(3) \\ \\ y_1=2\cdot\sin ((4\pi)/(3)t+(\pi)/(2)) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/ds4r6sr9cimbfkkihffrjla8kknxxd3rpb.png)
For A = 2, T = 1.5 and alpha = π/3, we have:
![y_2=2\sin ((4\pi)/(3)t+(\pi)/(3))](https://img.qammunity.org/2023/formulas/physics/college/d7gugk3b3jyxi0pbqlyokuw7wey3z5lsgs.png)
Now, adding both oscillations, we have:
![\begin{gathered} y=y_1+y_2 \\ y=2(\sin ((4\pi)/(3)t+(\pi)/(2))+\sin ((4\pi)/(3)t+(\pi)/(3))) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/t7jwe0dbk8unow1mer9r2pdo8wvb69d16o.png)