193k views
5 votes
If points A(4,5), B(1,1) and C (-2,5) are vertices of an isosceles triangle, determine measure of each base angle (in degrees with 2 decimal places);

1 Answer

7 votes

Answer:

53.13 degrees.

Step-by-step explanation:

Given the vertices of ABC: A(4,5), B(1,1) and C (-2,5)

First, determine the side lengths AB, AC, and BC using the distance formula:


\begin{gathered} Distance=√((x_2-x_1)^2+(y_2-y_1)^2) \\ AB=\sqrt[]{(4-1)^2+(5-1)^2}=\sqrt[]{(3)^2+(4)^2}=\sqrt[]{25}=5 \\ AC=\sqrt[]{(4-(-2))^2+(5-5)^2}=\sqrt[]{(6)^2}=6 \\ BC=\sqrt[]{(1-(-2))^2+(1-5)^2}=\sqrt[]{(3)^2+(-4)^2}=\sqrt[]{25}=5 \end{gathered}

A rough sketch of the triangle is attached below:

The base angles of the Isosceles triangle are angles A and C.

Next, we find the value of angle A using the Law of Cosine.


\begin{gathered} a^2=b^2+c^2-2bc\cos A \\ 5^2=6^2+5^2-(2*6*5)\cos A \\ 25=61-60\cos A \\ -60\cos A=25-61=-36 \\ \cos A=(-36)/(-60) \\ A=\arccos ((36)/(60)) \\ A\approx53.13\degree \end{gathered}

The measure of each base angle is 53.13 degrees (correct to 2 decimal places).

CHECK

If points A(4,5), B(1,1) and C (-2,5) are vertices of an isosceles triangle, determine-example-1
If points A(4,5), B(1,1) and C (-2,5) are vertices of an isosceles triangle, determine-example-2
User DaveAlden
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories