Given data
*The given time is t = 5.82 s
*The given angular velocity is
![\omega=68\text{ rad/s}](https://img.qammunity.org/2023/formulas/physics/college/xk1rc0au5gf713kthzly9sq9obqbluxkdj.png)
*The number of the revolution is n = 45 revolutions
*The angular distance traveled is
![\theta=2\pi n=2\pi(45)=90\pi\text{ rad}](https://img.qammunity.org/2023/formulas/physics/college/rska5q69xecfxkgke8gr4fqm31q8pbfvjm.png)
(a)
The formula for the constant angular acceleration is given by the rotational equation of motion as
![\theta=\omega t-(1)/(2)\alpha t^2](https://img.qammunity.org/2023/formulas/physics/college/8jjve0p820gbud24gt13yxbs3xs91txith.png)
Substitute the known values in the above expression as
![\begin{gathered} 90\pi=(68)(5.82)-(1)/(2)\alpha(5.82)^2 \\ \alpha=6.68rad.s^(-2) \end{gathered}](https://img.qammunity.org/2023/formulas/physics/college/9uy3sjbi72wisp3pmwmht0szf09zatwnf5.png)
Hence, the constant angular acceleration of the disk is 6.68 rad/s^2.