Given:
Distance travelled with the wind = 260 miles
Distance travelled against the wind = 180 miles
Speed of wind = 20 mph.
Let's find the rate of the plane in still air.
Apply the formula:
![rate=(distance)/(time)](https://img.qammunity.org/2023/formulas/mathematics/college/kcunbdr8rzatb38hi37ajkdg4lbkoh2ng6.png)
Thus, we have the equations:
![\begin{gathered} t_{with\text{ wind}}=(260)/(r+20) \\ \\ t_{against\text{ wind}}=(180)/(r-20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/13zwptyotxvz13gqzirl9bdd4ipabcjftd.png)
Now, the rate in still air will be:
![\begin{gathered} t_{with\text{ wind}}=t_{against\text{ wind}} \\ \\ (260)/(r+20)=(180)/(r-20) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mafhrzf9u7xvryzsy19oea9gw4cd9pmgh9.png)
Now, let's solve for r in the equation above.
Cross multiply:
![180(r+20)=260(r-20)](https://img.qammunity.org/2023/formulas/mathematics/college/l4e4rs4oq8sdwpvdzmhx0t146iml1hi18t.png)
Divide both sides of the equation by 20:
![\begin{gathered} (180(r+20))/(20)=(260(r-20))/(20) \\ \\ 9(r+20)=13(r-20) \\ \\ \text{ Apply distributive property:} \\ 9r+9(20)=13r+13(-20) \\ \\ 9r+180=13r-260 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ha878mvzy6g23lxq88gdwwfurl08aon1xj.png)
Solving further:
![\begin{gathered} 13r-9r=180+260 \\ \\ 4r=440 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwsjuufl21mhyrcmbyigv5gcbvw0reyg9j.png)
Divide both sides by 4:
![\begin{gathered} (4x)/(4)=(440)/(4) \\ \\ x=110 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/jc3985nc6rer3cics44yflv94nvw69oo0a.png)
Therefore, the rate in still air is 110 mph.
ANSWER:
110 mph