We will determine the surface area of the solid as follows:
*First: We can see that the solid is composed of three pairs of sides, so we will have to calculate the area of just 3 different faces.
*Second: We determine the areas:
![A_1=x\cdot y\Rightarrow A_1=2\cdot11\Rightarrow A_1=22](https://img.qammunity.org/2023/formulas/mathematics/college/6wwd3cqe0a6ijht9h9rud6cqf3nx1t4upq.png)
![A_2=x\cdot z\Rightarrow A_2=2\cdot6\Rightarrow A_2=12](https://img.qammunity.org/2023/formulas/mathematics/college/2enhnijr0s4mm2wetptv3khbk7yenxrfql.png)
![A_3=y\cdot z\Rightarrow A_3=11\cdot6\Rightarrow A_3=66](https://img.qammunity.org/2023/formulas/mathematics/college/d80x46am3chn2o2p2o4gh86rurp13lg8v9.png)
*Third: We add the areas to determine the surface area:
![S_A=2(A_1+A_2+A_3)\Rightarrow S_A=2(22+12+66)](https://img.qammunity.org/2023/formulas/mathematics/college/hniaw7t8v97l6e2ie5b65w0jlm23oi27uk.png)
![\Rightarrow S_A=200](https://img.qammunity.org/2023/formulas/mathematics/college/kqa0kbha0rvc97q54cmfnryrpuvy0prd6s.png)
So, the surface area is 200 square units. [Option C