Given that the average student loan debt is $25,900.
![\mu=25,900](https://img.qammunity.org/2023/formulas/mathematics/college/b45ft6k4jzhhj4oz1iuzgtgmf14tk2a8ix.png)
The standard deviation is $10,200.
![\sigma=10,200](https://img.qammunity.org/2023/formulas/mathematics/college/48mrzpzdcuf3f4dxzo4htg6unnahekrft4.png)
Let X be the student loan debt of a randomly selected college graduate.
![Z=(x-\mu)/(\sigma)](https://img.qammunity.org/2023/formulas/mathematics/college/sv72d3baryltp7s92ka7mqqorx2970ht60.png)
When x =$14,950, we have;
![\begin{gathered} Z_1=(14950-25900)/(10200) \\ Z_1=-1.0735 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/oe8hp9imj1gj8g6q4avar38p1pqr6gu10k.png)
When x=$28,050, we have;
![\begin{gathered} Z_2=(28050-25900)/(10200) \\ Z_2=0.2108 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2du90qbu5czuwme3fnt40dnpfav89ainhr.png)
Then,
[tex]\begin{gathered} P(-1.0735
The probability that the college graduate has between $14,950 and $28,050 in student loan debt is 0.4420