1.6k views
5 votes
You deposit $4000 in an account earning 3% interest compounded monthly. How much will you have in the account in 15 years?

User Glyph
by
7.9k points

1 Answer

2 votes

Given:

Principal, P = $4000

Interest rate, r = 3% = 0.03

Time, t = 15 years.

Number of times comounded, n = monthly = 12 months a year

Let's find the final Amount in the account after 15 years.

Apply the compound interest formula


A=P(1+(r)/(n))^(nt)

Where:

A is the final amount.

P = $4000

r = 0.03

t = 15

n = 12

Thus, we have:


\begin{gathered} A=4000(1+(0.03)/(12))^(12*15) \\ \\ A=4000(0.0025)^(180) \\ \\ A=4000(1.0025)^(180) \\ \\ A=4000(1.567431725) \end{gathered}

Solving further:


A=6269.73

Therefore, the amount in the account in 15 years will be $6269.73

ANSWER:

$6269.73

User Zaxunobi
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories