![4x^2-27x+18](https://img.qammunity.org/2023/formulas/mathematics/high-school/hyu04omvtt3f2nc9sjzl7kmf48ivq1zksb.png)
We have the above equation, this is a quadratic polynomial, which is a polynomial with two real roots (two x-axis crossings), therefore x has two possible solutions.
Now, let's factor this equation and find the values for x.
![\begin{gathered} (4x^2-3x)+(-24x+18) \\ x(4x-3)+6(4x-3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/mnl7xp4iiwdxqkt2zub6nw7tsdusbe5xoi.png)
Now, we factor in the common term 4x-3.
![(4x-3)(x-6)](https://img.qammunity.org/2023/formulas/mathematics/college/aejncrlc8cvho33rdtje7y0il0rt0rxzgi.png)
Now, let's solve for the two values of x
![\begin{gathered} x-6=0 \\ x=6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ygixirquikupuqm0ljniblf8h8aprv02y1.png)
![\begin{gathered} 4x-3=0 \\ 4x=3 \\ x=(3)/(4)=0.75 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/uy6twvas7jcgwwmqf9zzcs7u6hwp2xtxs9.png)
In conclusion, x can take the value of x = 6 or x = 0.75
In the following graph we can see this: