So,
Here we can identify the following terms of the given sequence:
![\begin{gathered} a_3=50,000 \\ a_5=20,000,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e947o8mp7xkbk62tfm95pq2grk18577bxu.png)
What we're going to do to find an explicit rule for this geometric sequence is to replace each term in the general form:
![a_n=a_1(r)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/5owwl7gmyl1gmmss9rui7g0g0l0oy6waqh.png)
We're given that:
![\begin{gathered} a_3=50,000 \\ a_5=20,000,000 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/e947o8mp7xkbk62tfm95pq2grk18577bxu.png)
So, replacing we got:
![\begin{gathered} 50,000=a_1(r)^(3-1)\to50,000=a_1(r)^2 \\ 20,000,000=a_1(r)^(5-1)_{}\to20,000,000=a_1(r)^4_{} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c3k2arfjxpoff2nj4qnqe49s9wanmbheab.png)
As you can see, here we have the following system:
![\begin{cases}50,000=a_1(r)^2 \\ 20,000,000=a_1(r)^4_{}\end{cases}](https://img.qammunity.org/2023/formulas/mathematics/college/rdivsu4tcdc1knys1g4158isuvto2nzi0c.png)
We could divide equation 2 by equation 1 to find the value of r:
![\frac{20,000,000=a_1(r)^4_{}}{50,000=a_1(r)^2}\to400=(r)^2\to r=20](https://img.qammunity.org/2023/formulas/mathematics/college/7jqmpg3bidjhwza8xer2v7wnw5hxg36z0k.png)
Now that we know that r=20, we could find the value of a1:
![\begin{gathered} 50,000=a_1(20)^2 \\ 50,000=a_1(400) \\ a_1=(50,000)/(400)=125 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5ithzj506cgi4bonv7ogudo3ylac1ivc47.png)
Therefore, the explicit rule will be:
![a_n=125(20)^(n-1)](https://img.qammunity.org/2023/formulas/mathematics/college/l7936zn4regggrdke046s6fjnlwilztab6.png)