SOLUTION;
Case: Comparing Volumes
Given:
A Square-based pyramid and a cylinder
Required: show that the Volume of figure B is 3 times that of figure A
Method:
Step 1: Find we find the Volume of the square-based pyramid.
Volume
![\begin{gathered} V=(1)/(3)l* w* h \\ V=(1)/(3)*5\pi*5\pi*6\pi \\ V=50\pi^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nq57d83pty5izwzjxjmgaxf9gxv22d8lsg.png)
Step 2: Find we find the Volume of the Cylinder
![\begin{gathered} V=\pi r^2h \\ V=\pi*(5\pi)^2*6 \\ V=\pi*5\pi*5\pi*6 \\ V=150\pi^3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/r3zoopezcv807wx35mx3xnc6rnzok55ffh.png)
Step 3:
Dividing the volumes to check if it gives 3
![\begin{gathered} ratio=(V_B)/(V_A) \\ ratio=(150\pi^3)/(25\pi^3) \\ ratio=3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/vfcrqikrccjgp6ioes1ncd0w9xm0xraf97.png)
Step 4: Since the ratio of the volumes of figure B to A is 3, it means that voume figures B is three times the Volume of figure A.