We are given the following binomial probability distribution
![p(x)=\binom{5}{x}\cdot049^x\cdot0.51^(5-x)](https://img.qammunity.org/2023/formulas/mathematics/college/73fgv0xjfh3tznjjifzq0ldryshx9vf62t.png)
Recall that the general form of the binomial probability distribution is given by
![p(x)=\binom{n}{x}\cdot p^x\cdot(1-p)^(n-x)](https://img.qammunity.org/2023/formulas/mathematics/college/d54lpgd3vpg7624b38gjk4m76rmtw2wntw.png)
Comparing the given binomial probability distribution with the general form,
The probability of success is p = 0.49
The sample size is n = 5
Let us find the probability for x = 0, 1, 2, 3, 4, 5
![\begin{gathered} p(x=0)=\binom{5}{0}\cdot049^0\cdot0.51^(5-0)=0.0345 \\ p(x=1)=\binom{5}{1}\cdot049^1\cdot0.51^(5-1)=0.1658 \\ p(x=2)=\binom{5}{2}\cdot049^2\cdot0.51^(5-2)=0.3185 \\ p(x=3)=\binom{5}{3}\cdot049^3\cdot0.51^(5-3)=0.306 \\ p(x=4)=\binom{5}{4}\cdot049^4\cdot0.51^(5-4)=0.147 \\ p(x=5)=\binom{5}{5}\cdot049^5\cdot0.51^(5-5)=0.0283 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/317bbalxlhxh3ej7t5ck6xlykhlvx7cm4n.png)
Now compare the above probabilities with the given graphs.
Notice that the above probabilities exactly matches with graph A
Therefore, the correct answer is graph A.
(b) Mean and standard deviation:
Recall that the mean of the binomial probability distribution is given by
![\mu=n\cdot p](https://img.qammunity.org/2023/formulas/mathematics/college/hezvi5ccilykd53bvt73090woqvichn6tq.png)
Where n is the sample size and p is the probability of success
![\mu=n\cdot p=5\cdot0.49=2.45](https://img.qammunity.org/2023/formulas/mathematics/college/rd3gchaia6so27g848f8xitwk0bkbyk8mi.png)
Therefore, the mean is 2.45
Recall that the standard deviation of the binomial probability distribution is given by
![\begin{gathered} \sigma=\sqrt[]{n\cdot p\cdot(1-p)} \\ \sigma=\sqrt[]{5\cdot0.49\cdot(1-0.49)} \\ \sigma=1.12 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pcl2q8yf0jg9bnqe37mx9bwc9y0xox1rap.png)
Therefore, the standard deviation is 1.12
(c) The mean is 2.45 and the standard deviation is 1.12
We need to show two standard deviation interval below and above the mean.
![\begin{gathered} lower=\mu-2\cdot\sigma=2.45-2\cdot1.12=2.45-2.24=0.21 \\ upper=\mu+2\cdot\sigma=2.45+2\cdot1.12=2.45+2.24=4.69 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/pz54p4kn61qtldxbe5o4x99nmli2m75fej.png)
So, the two points are 0.21 and 4.69
As you can see, graph C shows these two points.