104k views
4 votes
Find the first and second derivatives of f(x) 1-2x O f'(x) 2x-3 ex 5 - 2x f"(x) = O 3-2 f'(x) = 2x-5 F"(x) ex O f'(x) = 4xe* - 2e f"(x) = 4xe* + 2e O f'(x) = 2xe* - 3e* f'(x) = 2xe - ex

Find the first and second derivatives of f(x) 1-2x O f'(x) 2x-3 ex 5 - 2x f"(x-example-1
User Pbaylis
by
8.3k points

1 Answer

5 votes

Given the function


f\mleft(x\mright)=(1-2x)/(e^x)^{}

To compute the first derivative, we must recall the derivative of a quotient rule:


((h)/(g))^(\prime)=(h^(\prime)g-g^(\prime)h)/(g^2)

Here: h(x)=1-2x, g(x)=e^x

h'(x)=-2

g'(x)=e^x

substituting into the formula:


f^(\prime)(x)=\frac{(-2)e^x-e^x(1-2x)^{}}{e^(2x)}^{}=(-2e^x-e^x+2xe^x)/(e^(2x))

Operating:


f^(\prime)(x)=(-3e^x+2xe^x)/(e^(2x))=e^x((-3+2x)/(e^(2x)))

Simplifying numerator and denominator:


f^(\prime)(x)=(-3+2x)/(e^x)

Looks like this matches the first choice

Now find the second derivative

This time: h(x)=-3+2x, h'(x)=2

g(x)=e^x, g'(x)=e^x

Applying the quotient rule again:


f^(\prime)^(\prime)(x)=(2e^x-e^x(-3+2x))/(e^(2x))=(2e^x+3e^x-2xe^x)/(e^(2x))=(5e^x-2xe^x)/(e^(2x))

Factoring and simplifying:


f^(\doubleprime)(x)=e^x\cdot(5-2x)/(e^(2x))=(5-2x)/(e^x)

Both answers confirm the first choice is correct

User Lamarr
by
7.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories