232k views
4 votes
Determine the derivative with quotient rule and find the equation of the tangent to f(x) at x=0

Determine the derivative with quotient rule and find the equation of the tangent to-example-1
User Hivert
by
8.5k points

1 Answer

5 votes

ANSWER


\text{ The derivative of the function is; }\frac{\text{ dy}}{\text{ dx}}\text{ = }\frac{\text{ -2x}^2\text{ + 2}}{\text{ \lparen x}^2\text{ + 1\rparen}^2}

Step-by-step explanation

Given that;


\text{ f\lparen x\rparen = }\frac{\text{ 2x}}{\text{ x}^2\text{ + 1}}

Let U(x) = 2x and V(x) = x^2 + 1

Apply the quotient rule to find the derivative of f(x)


\text{ }\frac{\text{ dy}}{\text{ dx}}\text{ = }\frac{\text{ V}\frac{\text{ dU}}{\text{ dx}}\text{ - U }\frac{dv}{\text{ dx}}}{\text{ V}^2}

Differentiate U and V with respect to x


\begin{gathered} \text{ U\lparen x\rparen = 2x} \\ \text{ }\frac{\text{ du}}{\text{ dx}}\text{ = 2} \\ \\ \\ \text{ V\lparen x\rparen= x}^2\text{ + 1} \\ \text{ }\frac{dv}{\text{ dx}}\text{ = 2x} \end{gathered}

Hence, we have


\begin{gathered} \text{ }\frac{\text{ dy}}{\text{ dx}}\text{ = }\frac{(x^2\text{ + 1\rparen}*2\text{ - 2x\lparen2x\rparen}}{(x^2\text{ + 1\rparen}^2} \\ \\ \text{ }\frac{\text{ dy}}{\text{ dx}}\text{ = }\frac{\text{ 2x}^2\text{ + 2 - 4x}^2}{(x^2\text{ + 1\rparen}^2} \\ \\ \text{ }\frac{\text{ dy}}{\text{ dx}}\text{ = }\frac{\text{ -2x}^2\text{ + 2}}{\text{ \lparen x}^2\text{ + 1\rparen}^2} \end{gathered}

User Keith Bennett
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories