The first thing to note is that the diagonals of any rhombus always bisect each other at a right angle
4x + 3 = 15
4x = 15-3
4x=12
x = 12/4
x = 3
To find y:
In the diagram above,
![\begin{gathered} 17^{2\text{ }}=15^2+h^2 \\ 289=225+h^2 \\ h^2=\text{ 289-225} \\ h^2=64 \\ h=\sqrt[]{64} \\ h=8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/9ykcx60mh7d5zs2lkoafd1yyljz2q0e91c.png)

To find the perimeter:
Perimeter of a rhombus = 4L ( where L is length of the one side)
Perimeter = 4 x 17 = 68