Given
Passenger misses a flight 0.0919
Flying capacity 51 passengers
Definitions
Definition binomial probability
![P(X=k)=(n!)/(k!(n-k)!)p^k(1-p)^(n-k)](https://img.qammunity.org/2023/formulas/mathematics/college/9ncxaxedda93oe7476d1dftvkxt191v61w.png)
Addition rule for disjoint or mutually exclusive events
![P(\text{AUB)}=P(A)+P(B)](https://img.qammunity.org/2023/formulas/mathematics/college/rdepynfm4mftdy5kp4gbj2b0juky9et4iw.png)
(a) if 53 tickets are sold
![n=53](https://img.qammunity.org/2023/formulas/mathematics/college/n3h95ixnu2hnx8aopqplobb7jxf0vpgx6w.png)
Evaluate the definition of binomial probability ar x = 52, 53
![\begin{gathered} P(X=52)=(53!)/(52!(53-52)!)0.9081^(52)(1-0.9081)^(53-52) \\ \\ P(X=53)=(53!)/(53!(53-53)!)0.9081^(53)(1-0.9081)^(53-53) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/h7z0fvl2irede7qm7e8baxkf49lxaegmub.png)
![\begin{gathered} P(X=52)=0.03239 \\ P(X=53)=0.00604 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5y1rzm7l3zlhv1z65xdbflz8ayuo6e0ng0.png)
![\begin{gathered} P(X=52\cup X=53)=0.03239+0.00604 \\ P(X=52\cup X=53)=0.0384 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/norso6n1dxep2nd06ebw5ql1ygq7acgbzx.png)