The given figure is formed by a cylinder and a cone.
The volume of a cone is
![V=(1)/(3)\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/cb7imlxhz45xpg280bynm05moay5z8zpto.png)
Where pi = 3.14, r = 5 cm, and h = 13 cm. Let's replace these values
![\begin{gathered} V=(1)/(3)\cdot3.14\cdot(5cm)^2\cdot13\operatorname{cm} \\ V=340.17\operatorname{cm}^3 \end{gathered}]()
The volume of a cylinder is
![V=\pi r^2h](https://img.qammunity.org/2023/formulas/mathematics/high-school/axumboiozoejyargdo4sskcbefipwsp4rb.png)
Where pi = 3.14, r = 5cm, and h = 2 cm. Let's replace these values
![\begin{gathered} V=3.14\cdot(5cm)^2\cdot(2\operatorname{cm})=3.14\cdot25\cdot2 \\ V=157\operatorname{cm}^3 \end{gathered}]()
Then, we add both volumes to find the total
![V_{\text{total}}=340.17+157=497.17\operatorname{cm}^3]()
Hence, the volume of the composite figure is around 497.17 cubic centimeters.