If the parent quadratic function is shifted 1 unit right, we will subtract 1 on the "x" variable. The function becomes:
![g(x)=(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/lpuokwizyjnm6n3coz34nyvhkeikyrvnoq.png)
If the function is vertically stretched by a factor of 3, then the whole function is multiplied by 3. The function then becomes:
![g(x)=3(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/a9h10aab80daxse4lr1ud75hobo72wzn32.png)
Then, lastly, to reflect the function over the x-axis, we will multiply the function by -1.
![g(x)=(-1)(3)(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/14nnujqa5m6iyacqk2widdm80y17k6g4yj.png)
The function becomes:
![g(x)=-3(x-1)^2](https://img.qammunity.org/2023/formulas/mathematics/college/66r6t1ynssvnhi2402l7mxs5t2z96zboh8.png)
The equation of the new function after the given transformation is g(x) = -3(x - 1)² as shown above.