EXPLANATION
Let's see the facts:
Length = 12+ 2*Width =12+2w
Width=w
Area= 14cm^2
The area of the rectangle is given by the following relationship:
![\text{Area}_{\text{rectangle}}=Length\cdot Width](https://img.qammunity.org/2023/formulas/mathematics/college/7ytmkmah21yw0pistate9bqocatb8w4mgi.png)
Replacing terms:
![14=(12+2\cdot\text{Width)}\cdot\text{Width}](https://img.qammunity.org/2023/formulas/mathematics/college/8rtvdxj6p9284v1p8kg1w0ybotolszx14z.png)
To make it more simple, let's call w to the width and apply the distributive property:
![14=12w+2w^2](https://img.qammunity.org/2023/formulas/mathematics/college/rupfhi9jwrvm9ayntig6jyvhhp1zhvywwv.png)
Subtracting -14 to both sides:
![0=2w^2+12w-14](https://img.qammunity.org/2023/formulas/mathematics/college/c5x7bhwj4yk6vwr9ogzo9df5watchv9w9l.png)
Applying the quadratic roots formula:
![w_1,w_2=\frac{-b\pm\sqrt[]{b^2-4\cdot a\cdot c}}{2\cdot a}](https://img.qammunity.org/2023/formulas/mathematics/college/7ld32sdrt810c4orhc9tcy2hekjw0e6wuf.png)
We have a=2, b=12 and c=-14
Replacing terms:
![w_1,w_2=\frac{12\pm\sqrt[]{12^2-4\cdot2\cdot(-14)}}{2\cdot2}](https://img.qammunity.org/2023/formulas/mathematics/college/ffhunwk8ia4ni2i32b50c5ff4q1gwhpt7v.png)
Multiplying numbers:
![w_1,w_2=\frac{12\pm\sqrt[]{144-112}}{4}](https://img.qammunity.org/2023/formulas/mathematics/college/b4c55rne314trcdik96suo9s4p2bw4zyn2.png)
Subtracting numbers:
![w_1,w_2=\frac{12\pm\sqrt[]{32}}{4}=\frac{12\pm4\sqrt[]{2}}{2}=6\pm2\sqrt[]{2}](https://img.qammunity.org/2023/formulas/mathematics/college/79n0wlsu8z9yocl77wfw98jd4tr1tgm8gv.png)
The solutions to the quadratic equation are:
![w_1=8.82,w_2=3.17](https://img.qammunity.org/2023/formulas/mathematics/college/xysmdflx83yx3ejwohhux9gtzl0cd0kqpw.png)
We have two possible solutions, w_1=8.82 cm and w_2=3.17 cm. Let's take w_2=3.17 cm as a solution:
The length would be as follows:
![\text{length}=12+2\cdot3.17=18.34\operatorname{cm}]()
The answers are:
Width = 3.17 cm = 317/100 cm
Length = 18.34 cm = 917/50 cm