90.9k views
1 vote
Solve the differential.f"(x)=3xGiven f'(0)=3 and f(1)=4

1 Answer

5 votes

Given:


f^{^(\prime)^(\prime)}(x)\text{ =3x}

Solving the differential equation:


\begin{gathered} \int f^(\prime)^(\prime)(x)\text{ dx= }\int3x\text{ dx} \\ f^(\prime)(x)\text{ = 3}(x^2)/(2)+c_1 \end{gathered}

Applying the initial value f'(0) = 3


f^(\prime)(x)\text{ = }(3)/(2)x^2\text{ + 3}

Integrating further:


\begin{gathered} \int f^(\prime)(x)dx\text{ = }\int(3)/(2)x^2\text{ dx + 3}\int dx \\ f(x)\text{ = }(3)/(2)(x^3)/(3)\text{ + 3x + c} \\ f(x)\text{ = }(1)/(2)x^3\text{ + 3x + c} \end{gathered}

Applying the initial value f(1) =4


\begin{gathered} 4\text{ = }(1)/(2)(1)^3\text{ + 3\lparen1\rparen + c} \\ 4\text{ = }(1)/(2)\text{ + 3 + c} \\ Solving\text{ for c} \\ c\text{ = 4-}(1)/(2)\text{ -3} \\ c\text{ = }(8-1-6)/(2) \\ c=\text{ }(1)/(2) \end{gathered}

Hence, the solution is:


f(x)\text{ = }(1)/(2)x^3\text{ + 3x + }(1)/(2)

User NateSHolland
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories