90.8k views
1 vote
Solve the differential.f"(x)=3xGiven f'(0)=3 and f(1)=4

1 Answer

5 votes

Given:


f^{^(\prime)^(\prime)}(x)\text{ =3x}

Solving the differential equation:


\begin{gathered} \int f^(\prime)^(\prime)(x)\text{ dx= }\int3x\text{ dx} \\ f^(\prime)(x)\text{ = 3}(x^2)/(2)+c_1 \end{gathered}

Applying the initial value f'(0) = 3


f^(\prime)(x)\text{ = }(3)/(2)x^2\text{ + 3}

Integrating further:


\begin{gathered} \int f^(\prime)(x)dx\text{ = }\int(3)/(2)x^2\text{ dx + 3}\int dx \\ f(x)\text{ = }(3)/(2)(x^3)/(3)\text{ + 3x + c} \\ f(x)\text{ = }(1)/(2)x^3\text{ + 3x + c} \end{gathered}

Applying the initial value f(1) =4


\begin{gathered} 4\text{ = }(1)/(2)(1)^3\text{ + 3\lparen1\rparen + c} \\ 4\text{ = }(1)/(2)\text{ + 3 + c} \\ Solving\text{ for c} \\ c\text{ = 4-}(1)/(2)\text{ -3} \\ c\text{ = }(8-1-6)/(2) \\ c=\text{ }(1)/(2) \end{gathered}

Hence, the solution is:


f(x)\text{ = }(1)/(2)x^3\text{ + 3x + }(1)/(2)

User NateSHolland
by
4.5k points