Arrange the given data in ascending order.
![36,36,38,42,45,47,49,51](https://img.qammunity.org/2023/formulas/mathematics/college/rdjvljs9v1ovibqp4kdszg1k0pxsg2rh0b.png)
The range is difference between highest and lowest value.
Determine the range for the data.
![\begin{gathered} R=51-36 \\ =15 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/k5fdh6p7arewwytyem1lhm88my3hjko5ic.png)
So range is 15.
The lower half of the data is 36,36,38 and 42 and upper half f the data is 45,47,49 and 51.
Determine the Quartile 1 and Quartile 3 for the data.
![\begin{gathered} Q_1=(36+38)/(2) \\ =37 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qqs5e8ugwmoisf7wce3mnt0j8wkqb3vrdv.png)
![\begin{gathered} Q_3=(47+49)/(2) \\ =48 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/fwwp5qzf29hjl71ttxl9v7ukx7hehn1wdv.png)
Determine the Inter Quartile range (IQR) for the data.
![\begin{gathered} \text{IQR}=Q_3-Q_1 \\ =48-37 \\ =11 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nzrqyjm6gv1xrmyihq0437b0gjm02sm8qv.png)
So IQR is 11.
Determine the mean value of the data.
![\begin{gathered} \text{Mean}=(42+36+45+38+51+47+36+49)/(8) \\ =(344)/(8) \\ =43 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/c5ckoga35k6fw6d97vcq4lkwzoo0dnlrby.png)
Determine the absolute deviation of the data.
![\begin{gathered} |43-36|=|7| \\ =7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ye7njw1him49q7akcj8y52l4txzt0nzsv0.png)
![\begin{gathered} |43-36|=|7| \\ =7 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ye7njw1him49q7akcj8y52l4txzt0nzsv0.png)
![\begin{gathered} |43-38|=|5| \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ntki6641l229nwnz28nz0cqspb9v9qturs.png)
![\begin{gathered} |43-42|=|1| \\ =1 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/d6vgm3nsflmp696p7h0e985xxg5fvyq5a5.png)
![\begin{gathered} |43-45|=|-2| \\ =2 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/g6wbgjfnrccp7v2x9bbglbkqaei691dn2u.png)
![\begin{gathered} |43-47|=|-4| \\ =4 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/3q2o7r3re8lo98xr1kqcxi3ih6xm3sivlx.png)
![\begin{gathered} |43-49|=|-6| \\ =6 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/14mosa7sr475vdhcmgp27z8qha8lkiw0jb.png)
![\begin{gathered} |43-51|=|-8| \\ =8 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/nnjh5l79mieh37yog1icp2mc25ltns9d2c.png)
Determine the mean value for the absolute deviation.
![\begin{gathered} \text{MAD}=(7+7+5+1+2+4+6+8)/(8) \\ =(40)/(8) \\ =5 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/2cd409r3jb79uonmafnb306aumk00zexh5.png)
So value of Mean Absolute Deviation (MAD) is 5.