55.7k views
5 votes
I need this practice problem explained I will provide a picture with the answer options

I need this practice problem explained I will provide a picture with the answer options-example-1
I need this practice problem explained I will provide a picture with the answer options-example-1
I need this practice problem explained I will provide a picture with the answer options-example-2

1 Answer

4 votes

Given the following System of Equations:


\begin{cases}x+2y=8 \\ -3x-2y=12\end{cases}

You can solve it with Cramer's Rule. The steps are shown below:

1. By definition, you know that for "x"


x=(D)/(D_x)=\frac{\begin{bmatrix}{c_1} & {b_1} & {} \\ {c_2_{}_{}_{}} & {b_2} & {} \\ {} & {} & \end{bmatrix}}{\begin{bmatrix}{a1_{}} & {b_1} & {} \\ {a_2_{}} & {b_2} & {} \\ {} & {} & \end{bmatrix}}

In this case:


\begin{gathered} c_1=8 \\ c_2=12_{} \\ b_1=2 \\ b_2=-2_{} \\ a_1=1 \\ a_2=-3 \end{gathered}

Then, you can substitute values and evaluating, you get that the value of "x" is:


x=\frac{\begin{bmatrix}{8_{}} & {2_{}} & {} \\ {12_{}} & {-2_{}} & {} \\ {} & {} & \end{bmatrix}}{\begin{bmatrix}{1_{}} & {2_{}} & {} \\ {-3_{}} & {-2_{}} & {} \\ {} & {} & \end{bmatrix}}=((-2)(8)-(2)(12))/((-2)(1)-(2)(-3))=(-16-24)/(-2+6)=-10

2. By definition, for "y":


y=(D_y)/(D)=\frac{\begin{bmatrix}{a_1} & {c_1} & {} \\ {a_2} & {c_2} & {} \\ {} & {} & {}\end{bmatrix}}{\begin{bmatrix}{a_1} & {b_1} & {} \\ {a_2} & {b_2} & {} \\ {} & {} & {}\end{bmatrix}}

Knowing the values, substitute and evaluate:


y=\frac{\begin{bmatrix}{1_{}} & {8_{}} & {} \\ {-3_{}} & {12_{}} & {} \\ {} & {} & {}\end{bmatrix}}{\begin{bmatrix}{1_{}} & {2_{}} & {} \\ {-3_{}} & {-2_{}} & {} \\ {} & {} & {}\end{bmatrix}}=((12)(1)-(-3)(8))/((-2)(1)-(-3)(2))=(12+24)/(-2+6)=9

Therefore, the answer is:


\begin{gathered} x=\frac{\begin{bmatrix}{8_{}} & {2_{}} & {} \\ {12_{}} & {-2_{}} & {} \\ {} & {} & \end{bmatrix}}{\begin{bmatrix}{1_{}} & {2_{}} & {} \\ {-3_{}} & {-2_{}} & {} \\ {} & {} & \end{bmatrix}}=(-16-24)/(-2+6)=-10 \\ \\ \\ y=\frac{\begin{bmatrix}{1_{}} & {8_{}} & {} \\ {-3_{}} & {12_{}} & {} \\ {} & {} & {}\end{bmatrix}}{\begin{bmatrix}{1_{}} & {2_{}} & {} \\ {-3_{}} & {-2_{}} & {} \\ {} & {} & {}\end{bmatrix}}=(12+24)/(-2+6)=9 \end{gathered}

User Thomas Havlik
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories