Answer:
![x=(\pi)/(3),(5\pi)/(3),\pi](https://img.qammunity.org/2023/formulas/mathematics/college/wg92pztl344kpr9pxfa5d9darb8ny62o72.png)
Step-by-step explanation:
Given the below;
![2\sin ^2x=1+\cos x](https://img.qammunity.org/2023/formulas/mathematics/college/ab9w12tms7fjcso6knnvcalb7bjsff8rjd.png)
We'll follow the below steps to solve for x;
Step 1: Rewrite using the below trig identity;
![\begin{gathered} \sin ^2x+\cos ^2x=1 \\ \therefore\sin ^2x=1-\cos ^2x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/egsjwvkmbsswl4c71mav6vmelfpnvcgsxn.png)
So, we'll have;
![\begin{gathered} 2(1-\cos ^2x)=1+\cos x \\ \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xbj2b55g3uhthbk0raawlvviwsgqsrpgb3.png)
Step 2: Apply the difference of squares formula to the left-hand side of the equation;
![\begin{gathered} 2(1^2-\cos ^2x)=1+\cos x \\ 2(1+\cos x)(1-\cos x)=1+\cos x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/s4wx8z8cn97djig5vz3wyzkas8m6wvvrtt.png)
Step 3: Subtract (1 + cos x) from both sides;
![2(1+\cos x)(1-\cos x)-(1+\cos x)=0](https://img.qammunity.org/2023/formulas/mathematics/college/vhqavxuew0f52dpitq2axd49dgtymwkpqg.png)
Step 4: Factor out (1 + cos x);
![\begin{gathered} (1+\cos x)\lbrack2(1-\cos x)-1\rbrack=0 \\ (1+\cos x)(2-2\cos x-1)=0_{} \\ (1+\cos x)(1-2\cos x)=0 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/hw03arjjxycdjmhr1fq81mut1pl033ph1q.png)
Step 5: Solve for the values of x by equating each term to zero;
![\begin{gathered} 1+\cos x=0 \\ \cos x=-1 \\ x=\cos ^(-1)(-1) \\ x=180^(\circ) \\ \therefore x=\pi \\ Or \\ 1-2\cos x=0 \\ -2\cos x=-1 \\ (-2\cos x)/(-2)=(-1)/(-2) \\ \cos x=(1)/(2) \\ x=\cos ^(-1)((1)/(2)) \\ x=60^(\circ),300^(\circ) \\ \therefore x=(\pi)/(3),(5\pi)/(3) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/76mz9fxq9x39gkjwbvof2y99238wwhic3e.png)
![\begin{gathered} \\ \end{gathered}](https://img.qammunity.org/2023/formulas/spanish/college/dkihybcb5ch94gelpzqbagv1d8981eperg.png)