Step 1:
To select or choose 5 students out of 21 students involve combination.
In mathematics, a combination is a selection of items from a collection, such that the order of selection does not matter.
Step 2:
Use the formula below to find the number of ways 5 students can be selected from 21 students.
n = 21 and r = 5
![^nC_r\text{ = }\frac{n!}{(n\text{ - r)! r !}}](https://img.qammunity.org/2023/formulas/mathematics/college/ax6vh7t8it1jmj3bqdcn4z4aeckjoy1wkg.png)
Step 3:
![\begin{gathered} ^(21)C_5\text{ = }\frac{21!}{(21\text{ - 5)! 5!}}\text{ ways} \\ =\text{ }\frac{21!}{16!\text{ }*\text{ 5!}} \\ =\text{ }\frac{21\text{ }*\text{ 20 }*\text{ 19 }*\text{ 18 }*\text{ 17 }*\text{ 16!}}{16!\text{ }*\text{ 5 }*\text{ 4 }*\text{ 3 }*\text{ 2 }*\text{ 1}} \\ =\text{ }\frac{21\text{ }*\text{ 20 }*\text{ 19 }*\text{ 18 }*\text{ 17}}{5\text{ }*\text{ 4 }*\text{ 3 }*\text{ 2 }*\text{ 1}} \\ =\text{ }(2441880)/(120) \\ =\text{ 20349 ways} \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8qw3g7l0gb8k723f4b4sypn87j08gs780l.png)
Final answer