For the ratio test of a series the ratio is defined as:
![r=\lim _(n\to\infty)\lvert(a_(n+1))/(a_n)\rvert](https://img.qammunity.org/2023/formulas/mathematics/college/kj0unzjb34gm6o0eirssigzppko0zuw3r2.png)
And we have three possible outcomes:
- r<1 and the series converges.
- r>1 and the series diverges.
- r=1 and the test is inconclusive.
Knowing this let's apply the test to the series given by the question. We have:
![\begin{gathered} a_n=(2n!)/(2^(2n)) \\ a_(n+1)=(2(n+1)!)/(2^(2(n+1))) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/b26w6bbni5bzo9xcaaevzlgq5ke03njcel.png)
As you can see both expressions are always positive so when writing the ratio we don't need to add the absolute value symbols. Then the ratio is:
![\begin{gathered} r=(a_(n+1))/(a_n)=((2(n+1)!)/(2^(2(n+1))))/((2n!)/(2^(2n)))=(2(n+1)!)/(2^(2(n+1)))\cdot(2^(2n))/(2n!) \\ r=(2(n+1)!)/(2n!)\cdot(2^(2n))/(2^(2n+2)) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/8ccv5crrk2q23eyamalkrz2v6o1buzgdgi.png)
Here is important to remember a property of the factorial:
![\begin{gathered} a!=1\cdot2\cdot3\cdot\ldots\cdot(a-1)\cdot a \\ (a+1)!=1\cdot2\cdot3\cdot\ldots\cdot(a-1)\cdot a\cdot(a+1) \\ (a+1)!=a!\cdot(a+1) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/ud1le8d49pxiykiblfwgkhckc251fmh31h.png)
And a property of powers:
![b^(a+c)=b^a\cdot b^c](https://img.qammunity.org/2023/formulas/mathematics/college/iryzzb5vwsceq1g65d7qv8ulb514dvt14e.png)
Using these properties we get:
![\begin{gathered} r=(2(n+1)!)/(2n!)\cdot(2^(2n))/(2^(2n+2))=(2n!\cdot(n+1))/(2n!)\cdot(2^(2n))/(2^(2n)\cdot2^2) \\ r=(2n!\cdot(n+1))/(2n!)\cdot(2^(2n))/(2^(2n)\cdot2^2)=(2n!)/(2n!)\cdot(n+1)\cdot(2^(2n))/(2^(2n))\cdot(1)/(2^2) \\ r=(n+1)/(2^2)=(n+1)/(4) \\ r=(n+1)/(4) \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/cnelitzy4g5o6wq2pueqfdxlxxd9w1c4wo.png)
So the answer to part (a) is:
![r=(n+1)/(4)](https://img.qammunity.org/2023/formulas/mathematics/college/6y73urjptdhr06igm1rmvsh3a8n6ipawmk.png)
For part (b) we have:
The ratio depends on n. As n increases the ratio increases and gets greater than 1:
![\begin{gathered} r>1 \\ (n+1)/(4)>1 \\ n+1>4 \\ n>3 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/qyws2dg1pbb75hsw5tuhsr78nj2dqi5rha.png)
So for any n>3 the ratio is greater than 1 which means that this value of r tells us that the series diverges.