Given:
![9^x\text{ is the given expression.}](https://img.qammunity.org/2023/formulas/mathematics/college/ulyteoe3i26mpq9vz0d8433jrumfrgdeqa.png)
Required:
To find the equivalent expressions from the given options.
Step-by-step explanation:
We have to simplify all the expressions and know which expressions are equal to the given expression.
![\begin{gathered} (3\cdot3)^x=9^x \\ 3^x\cdot3^x=3^(2x)=(3^2)^x=9^x \\ 3^2\cdot3^x=3^(2+x) \\ 3\cdot3^(2x)=3^(1+2x) \\ 3\cdot3^x=3^(1+x) \\ 3^(2x)=(3^2)^x=9^x \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/5wlvx9m3ng6rkra3m7pqqlstyyy6su6y7g.png)
Expressions equivalent to the given expression are,
![(3\cdot3)^x,\text{ }3^x\cdot3^x,\text{ }3^(2x)](https://img.qammunity.org/2023/formulas/mathematics/college/etbb8pkzyrv42bxjwy7vbrjrx00sdbc7yc.png)
Final Answer:
![(3\cdot3)^x,(\text{3})^x\cdot3^x,(\text{3})^(2x)](https://img.qammunity.org/2023/formulas/mathematics/college/br0cm6npmkbzweyot6y4318lmvx3x39zl5.png)
Options A,B and F are the correct answers.