TEST STATISTIC
The formula used to calculate the test statistic is given to be:
![z=\frac{\bar{x}_1-\bar{x}_2}{\sqrt[]{(SD^2_1)/(n_1)+(SD^2_2)/(n_2)}}](https://img.qammunity.org/2023/formulas/mathematics/college/js5agwc3awmg4pdfw2n1r4cuso63lnhrnk.png)
The following parameters are provided in the question:

Substituting these values, we can calculate the test statistic to be:
![\begin{gathered} z=\frac{75.4-83.3}{\sqrt[]{(9.7^2)/(12)+(17.8^2)/(19)}} \\ z=-1.595 \end{gathered}](https://img.qammunity.org/2023/formulas/mathematics/college/xduoe07a04k71ggrts8bgew2o0qhq4jz77.png)
Therefore, the test statistic is gotten to be -1.595
P-VALUE
To calculate the p-value, we can use an online distribution calculator. This is shown below:
From the calculator above, the p-value is:

The significance level, α, is 0.02.
Therefore, the p-value is greater than α.
Thus, we do not reject the hypothesis.